Wednesday, March 21, 2018

Former MSU grad student Erin Lonergan monitors whitebark pine seedlings in the field. Following injections, whitebark seedlings are transplanted into the mountains.
Cathy Cripps injects millions of Siberian slippery jack spores into the soil around whitebark pine seedlings. According to a three-year study, the spores increase the whitebark seedling survival rate by 10-15 percent.

Native fungus could be another tool for helping restore ghostly forests

Cathy Cripps doesn’t seem to worry about the grizzly bears and black bears that watch her work, but she is concerned about the ghosts and skeletons she encounters.

The ghosts are whitebark pine forests that have been devastated by mountain pine beetles and white pine blister rust, said the Montana State University scientist who studies fungi that grow in extreme environments. The skeletons are dead trees that no longer shade snow or produce pine cones. The round purple pine cones hold the seeds that feed bears, red squirrels and Clark’s nutcracker birds. Shade at the top of watersheds keeps snow from melting too fast in the spring, preventing trout streams from drying up too early in the summer.

Fortunately, she has found hope in a native fungus called Siberian slippery jack, or Suillus sibiricus, said Cripps, a mycologist in MSU’s Department of Plant Sciences and Plant Pathology.
Cripps conducted a three-year study in collaboration with Waterton Lakes National Park in Canada that showed a 10 to 15 percent increase in the survival rate of whitebark pine seedlings when Siberian slippery jack spores are injected into the soil around them. The injection takes place in nurseries before the seedlings are transplanted in the mountains.

That increase is significant and good news for those trying to reinstate whitebark pine trees to the north-central Rocky Mountains and Pacific Northwest, Cripps said. The whitebark pine is a keystone species that grows at high elevations where other trees cannot, but it has been declared an endangered species in Canada and awaits the designation in the United States.
“That (jump in survival rates) might not sound like a big difference, but a small amount is a big deal considering the labor-intensive process,” Cripps said.

Cyndi Smith, scientist emeritus at Waterton, said “The positive results have encouraged Waterton Lakes National Park to continue inoculating both whitebark and limber pine seedlings, to give them the best opportunity we can to establish and survive to maturity.”

Participants in the research project, in addition to Cripps’ and Smith’s teams, were the U.S. Forest Service, National Park Service and volunteers from the United States and Canada.
Explaining how the collaboration began, Smith said, “Cathy gave a presentation on some of her Yellowstone work at the annual science meeting of the Whitebark Pine Ecosystem Foundation in Hailey, Idaho, in 2006. I was really taken with the idea that the ecosystem may have lost the beneficial fungi because our forests have been dead and dying for so long – and that perhaps there was a way to reverse that trend – so I approached Cathy with the idea.

“I’m a big believer in collaboration, whether locally or internationally, but certainly working with someone of Cathy’s academic stature has been very helpful when I have applied for funding for whitebark and limber pine projects,” Smith said, adding that, “Cathy’s enthusiasm is very infectious, and it is a delight to work with her.”